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Abstract A modelling approach of gas solid flow, considering different physical phenomenon
such as fluid turbulence, particle turbulence and interparticle collision effects are presented.
The approach is based on the two-fluid model formulation where both phases are treated as
continuum. This implies that the gas phase as well as the particle phase are weighted by their
separate volumetric fractions. According to the experimental results and numerical simulations,
the inter-particle collision possesses a significant influence of turbulence level on particle transport
properties in gas solid turbulent flow even for dispersed phase volume fraction (a , 0.01).
Comparisons in predictions have been depicted with inclusion of interparticle collision effect in the
equation of particle turbulent kinetic energy and with exclusion of this effect. Experimental
research has been conducted in a thermal power plant depicting higher erosion resistance of
noncircular square sectioned coal pipe bends in comparison with those with circular cross section,
the salient features of the experimental work are presented in this paper. Experiments have been
conducted to determine, pressure drop in straight and curved portions of conduits conveying air
coal mixtures in a thermal power plant. Validation of this experimental data with numerical
predictions have been presented.
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Introduction
The two phase gas particle flows have wide industrial application in chemical
process plants, thermal power engineering, etc. The pressure drop
characteristics in two phase turbulent transport is very important for design
of conduits conveying two phase gas-solid mixture. In practical situation where
particles are abrasive in nature, serious erosive wear may occur in pipelines
conveying gas-particle flows, e.g. coal pipe bend sections in thermal power
plants conveying air-coal mixtures. (Tsirkunov et al. 2002) adopted Lagrangian
approach for numerical treatment of the dispersed phase in dilute two phase
flows. Sommerfeld (2001, 2003) introduced interparticle and wall particle
collision effects in the frame of Lagrangian approach for the particle phase.

The paper aims at predictions of turbulent two phase gas particle flows based
on the Eulerian approach. In the two-fluid model, the two phases are treated as
two separate interpenetrating continua and mean equations are solved for both

Nomenclature
CD ¼ drag coefficient
dp ¼ particle diameter
De ¼ dean number
FWM ¼ wall momemtum exchange term

due to particle wall collision
f ¼ correction factor to Stoke’s drag

coefficient
g ¼ acceleration due to gravity
H ¼ distance along height from bottom

wall to axisymmetric plane of
square duct

K, k ¼ turbulence kinetic energy
Kp, kp ¼ particle turbulence kinetic energy
Kgp, kgp ¼ gas particle covariance
m ¼ particle mass loading ratio
P ¼ pressure in cross stream plane
p ¼ mean pressure in longitudinal

direction
R ¼ radius of circular duct
Rep ¼ particle Reynolds number
Sui ¼ fluid particle interaction term

(drag force) in fluid phase
equation gravitational term and
additional source term due to
curvature in curved passage

2brg 20:75ab CDm

d2p
Repðui 2 upiÞ

Spi ¼ fluid particle interaction
term (drag force) in particle
phase equation and
gravitational term
2arpg þ 0:75ab CDm

d2p
Repðui 2 upiÞ

ui, uj ¼ fluid velocities in the ith and jth
directions, respectively

upi, upj ¼ particle velocities in the ith and jth
directions, respectively

WIDTH ¼ width of the channel (rectangular)
or circumference of a semicircle

X ¼ distance along the width of a
channel

Y ¼ distance along the height of a
square channel or radial distance
for a circular channel from center,
i.e. y ¼ 0 at center

Y1 ¼ radial distance from wall of a
circular duct, Y 1 ¼ 0 at wall

r ¼ fluid density
rp ¼ particle density
a ¼ particle concentration or particle

volume fraction
b ¼ volume fraction of the gas
1 ¼ dissipation rate of turbulence
m ¼ fluid viscosity
meff ¼ effective viscosity of fluid

phase
mefp ¼ effective viscosity of particle

phase

Subscript
Cl ¼ center line of duct
l ¼ laminar
max ¼ maximum
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phases and coupled through interphase mass and momentum transfer terms.
Gidaspow (1994) provides a kinetic theory interpretation of the continuum
approach for dispersed phase. Mitter et al. (1993, 1998) have presented a crude
two-fluid model in which wall particle collision effects and fluid turbulence
modulation effects were not considered. The particle phase eddy viscosity was
expressed in terms of fluid phase eddy viscosity through an algebraic relation
presented by Choi and Chung (1983). Tu and Fletcher (1995) have also utilised a
similar algebraic relation between dispersed phase eddy viscosity and carrier
phase eddy viscosity for analysing two phase flow fields in curved duct. Zhang
and Reese (2001) introduced particle gas turbulence interactions in a kinetic
theory approach to granular flow. This kinetic theory has been detailed by
Gidaspow (1994). The present approach considers fluid turbulence modulation
effects due to the presence of particles and wall particle collision effects
to generate suitable Eulerian boundary conditions of the dispersed phase.
A particulate turbulence model based on separate transport equations for the
dispersed phase turbulent kinetic energy and fluid particle covariance
consisting of interphase transfer terms has been employed for modelling the
dispersed phase turbulent viscosity. Hence, the K-1-Kp-Kgp model is utilised.

The interparticle collision effects are found to have influence on dilute two
phase transport phenomenon at turbulence level resulting in return to isotropy
contribution in particle kinetic stress transport equations. This feature has
been depicted by He and Simonin (1993) and Simonin (1996). The resulting
model is based on Grad’s kinetic theory of dilute gases. The extension of Grad’s
theory to inelastic particles leads to a complementary dissipative term in the
particle kinetic stress transport equation. This aspect has also been considered
in present predictions. The numerical predictions of three dimensional
turbulent two phase flow fields have been depicted. Comparison has been
shown between the predictions based on Kp equation including interparticle
collision effect and excluding this effect.

The numerical predictions are compared with the experimental data of
Tanaka et al. presented by He and Simonin (1993) for vertical straight pipes
to validate the present computations. The computations are also extended to
curved ducts of noncircular cross section. The predicted effects of Dean number
and particle size on particle concentration profile are presented. The coal pipe
bends of circular section are subjected to serious erosion owing to localised
particle concentration on the outer wall. This feature has been shown through
numerical predictions of the particle concentration profile. The experimental
research was based upon design modification of a coal pipe bend to reduce
erosion. The comparison of erosion data for this design with that of a
conventional design under operational conditions has been depicted. The
pressure drop measurements on two phase flow of air coal mixtures in straight
and curved portions of coal pipes are compare well with the numerical
computations and the results are shown in this paper.
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Mathematical formulation for two phase turbulent transport using
Eulerian approach
The mathematical modelling based on the two fluid approach considers both
fluid phase and dispersed phase as two interpenetrating continua which
exchange mass, momentum and energy with each other. The strong analogy
between the random motion of particles in turbulent flow and thermal motion
of gas molecules leads to the application of kinetic theory approach to derive
the continuum equations for the particle phase. The two-fluid model approach
has been adopted by Durst and Milojevic (1984), He and Simonin (1993),
Rizk and Elghobashi (1989), Simonin (1996) and Tu and Fletcher (1996) for
the range of particle volumetric fraction considered in this paper,
i.e. a ¼ 3 £ 1024-5.13£1023.

In dilute two-phase flows, the continuum modelling of the dispersed phase
fluctuating motion was achieved by several authors using the algebraic models
obtained in the framework of Tehen’s theory of discrete particles suspended in
homogeneous fluid turbulence. This approach was validated by comparison of
numerical predictions with various experimental data. However, due to the
assumption of local particle entrainment by the surrounding fluid turbulence,
these models cannot account for important physical mechanism governing the
turbulent velocity correlations and particle dispersion in gas solid flows, such
as shearing of the dispersed phase flow, interparticle and particle-wall
collisions. Hence, the next section deals with modified Eulerian modelling of
the two phase flow field.

The following mathematical models representing the fluid and particle phase
are for a straight rectangular duct. Generalised Eulerian solid surface boundary
conditions for the particulate phase are employed through particle-wall collision
effect (Tu et al., 1996). In the momentum balance equation the particulate phase
momentum exchanges with solid walls are included. The turbulence closure for
the gas phase is effected by using the RNG based K-1 model (Tu and Fletcher,
1995, 1996). An exponential form of the additional source terms in K and 1
equations for turbulence modulation suggested by Tu and Fletcher (1994) has
also been utilised. The separate transport equations for particle turbulent
kinetic energy Kp and gas particle covariance Kgp consisting of interphase
transfer terms are being solved to generate the particle phase eddy viscosity as
described by Mitter (2000), Tu (1997), Tu and Fletcher (1996) and Zhou et al.
(1994). The equations for Kp and Kgp are derived from Favre averaged
conservation equations for both gas and particulate phases, and the equations
have been modelled based on physical analysis. These transport models
provide adequate description of anisotropy of the particle velocity fluctuations.
For curved ducts and pipes of circular cross sections, etc., various additional
source terms are included in the momentum equations. These terms include
additional viscous sources, centrifugal acceleration, etc. The validation of the
turbulence model and closure assumption have been carried out in comparison
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with the present numerical predictions and various computations and
experimental data based on Laser Doppler Velocimeter measurement.

Equations for the fluid phase
Equation of continuity

›

›xj
ðbrujÞ ¼ 0 ð1Þ

where b ¼ 12 a

Equation of momentum

›

›xj
ðbruiujÞ ¼ 2b

›p

›xi
þ

›

›xj
bmeff

›ui
›xj

þ
›uj
›xi

� �� �
þ Sui ð2Þ

Turbulence kinetic energy

›

›xj
ðbrujkÞ ¼

›

›xj

bueff
sk

›k

›xj

� �� �
þ bG2 br1þ Sk ð3Þ

where

G ¼ meff
›ui
›xj

þ
›uj
›xi

� �
›ui
›xj

Dissipation rate

›

›xj
ðbruj1Þ ¼

›

›xj

bueff
s1

›1

›xj

� �� �
þ

bC11G

k
2

bC2r1
2

k
þ S1 2 brR ð4Þ

meff ¼ m1 þ
Cmrk

2

1

The rate of strain term R in the 1 equation is expressed as:

R ¼
Cmh

3ð12 h=h0Þ1
2

ð1þ b0h3Þk
ð5Þ

and
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h ¼
k

1
2S2

ij

� �1
2

; Sij ¼
1

2

dui
dxj

þ
duj
dxi

� �

where b0 ¼ 0:0015 and h0 ¼ 4:38
According to RNG theory the constants in the turbulent transport equations

are:

Cm ¼ 0:0845; C1 ¼ 1:42; C2 ¼ 1:68; sk ¼ 1:0; s1 ¼ 1:3

For the confined two-phase flows, the effect of the particulate phase on the
turbulence structure of the gas phase are modelled as:

Sk ¼ 2
2f

tp
arpðk2 kgpÞ ð6aÞ

in the k-equation and

S1 ¼ 2
2f

tp
arpð12 1gpÞ ð7aÞ

in the 1-equation, where f is the correction factor to Stoke’s drag coefficient and
tp is the particle relaxation time.

Tu and Fletcher (1994) suggest the following forms for modelling the
additional dissipation terms Sk and S1 in the K- and 1-equation, respectively.

Sk ¼ 22k
arp

tp

� �
12 exp 2

Bktp

tL

� �� �
ð6bÞ

and

S1 ¼ 221
arp

tp

� �
12 exp 2

B1tp

tL

� �� �
ð7bÞ

where BK and B1 are the empirical constants provided in Tu and Fletcher
(1994, 1996) and tL is the Lagrangian integral time scale.

For computation of turbulent flows in near wall regions the wall function
method outlined by Patankar et al. (1975) has been adopted owing to its
economy from points of view of computer storage and time. Hence, it is
assumed that a logarithmic velocity profile prevails in the region between wall
and near wall node.
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Equation for particle phase
Equation of continuity

›

›xj
ðarpupjÞ ¼ 0 ð8Þ

Equation of momentum

›

›xj
ðarpupiupjÞ ¼ 2

a ›p

›xi
þ

›

›xj
amefp

›upi
›xj

þ
›upj
›xi

� �� �
þ Spi þ FWM ð9Þ

The terms Sui in equation (2) and Spi in equation (9) are defined in the
nomenclature.
Let 1f and 1p be the kinematic eddy viscosity of the gas and particle phases,

respectively. The transport equations governing the particulate turbulent
kinetic energy and gas particle covariance are given as follows.

Particle turbulent kinetic energy equation

›

›xj
ðarpupjkpÞ ¼

›

›xj
arp

1p

sp

›kp

›xj

� �
þ Pkp 2 Igp ð10Þ

where the turbulence production of the particle phase is:

Pkp ¼ arp1p
dupi
dxj

þ
dupj
dxi

� �
dupi
dxj

2
2

3
arpdij kp þ 1p

dupm

dxm

� �
dupj
dxj

and the turbulence interaction between the two phases gives:

Igp ¼
2f

tp
arpðkp 2 kgpÞ

where the correction factor f defined by Tu and Fletcher (1996) is selected as
follows:

f ¼

1þ 0:15R0:687
ep . . . 0 , Rep # 200

0:914R0:282
ep þ 0:0135Rep . . . 200 , Rep # 2; 500

0:0167Rep . . . 2; 500 , Rep

2
6664

3
7775

The gas-particle covariance equation

›

›xj
arp uj þ upj

� �
kgp

	 

¼

›

›xj
arp

1f

sf

þ
1p

sp

� �
›kgp

›xj

þ Pkgp 2 arp1gp 2 pgp

ð11Þ

Gas-particle
transport

phenomenon

585



where the turbulence production by the mean velocity gradiants of two
phases is:

Pkgp ¼
1

2
arp 1f

dui
dxj

þ 1p
dupi
dxi

� �
2

2

3
arpdijkgp

�

2
1

3
arpdij 1f

dupm

dxm
þ 1p

dupm

dxm

� ��
dui
dxj

þ
dupi
dxj

� �

The interaction term between the two phases:

pgp ¼
f

2tp
arp ð1þmÞ2kgp 2 2k2 2mkp

� �
where m is the particle mass loading.

The dissipation term due to gas viscous effect 1gp is given by

1gp ¼ 1 expð2B1tp=tLÞ

where tL ¼ k=1; and B1 ¼ 0:4
The turbulent eddy viscosity of the particulate phase is defined as:

1p ¼ lp1

ffiffiffiffiffiffiffiffi
2

3
kp

r

The characteristic length lp1 (Tu and Fletcher, 1996) of the particulate phase is
modelled as:

l 0p1 ¼
lgr

2
ð1þ cos2 uÞ exp 2Bgp

ju00r j

ju00gj
sinðkg 2 kpÞ

" #
ð12Þ

where lgr is the characteristic length scale of gas phase. lgr is defined in terms
of k and 1 (Tu and Fletcher, 1996) as

lgr ¼

ffiffiffi
3

2

r
Cmk

3=2

1
;

In the above equation u is the angle between the velocity of the particle and the
velocity of the gas to account for the crossing trajectories effect. Bgp is a
constant determined experimentally as Bgp ¼ 0:01: D is the characteristic
length of the system.

lp1 ¼ minðl 0p1;DÞ

The relative fluctuating velocity is given by:
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u00r ¼ u00g 2 u00p ð13Þ

and

ju00r j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ðkg 2 2kgp þ kpÞ

r
ð14Þ

In the above equations, the subscripts g and p refers to the gas particle phases,
respectively.

Eulerian modelling of particle wall collisions via a Lagrangian
approach
In order to improve the Eulerian modelling of mean particulate flow behaviour
near the wall, a one dimensional model is used to derive the particle wall
rebounding distance and the reflected particle velocity behaviour near the wall.
The derivation has been shown by Tu et al. (1996). This approach has been
utilised by Mitter (2000).

The particle rebounding distance is computed as follows:

yn ¼
tp

f
u 0
p;0 2 jugjref ln

u 0
p;0

jugjref
þ 1

� �� �
ð15Þ

where up,0

0

is the initial velocity of the reflected particle.
The reflected particle velocity as a function of the distance from the wall is

given by:

u 0
p 2 jugjref ln

u 0
p

jugjref
þ 1

� �
¼

f

tp
ðyn 2 ypÞ ð16Þ

yp is the distance of the point p close to the wall surface.
The particle wall momentum exchange force is given by Tu and Fletcher

(1996) as follows:

FN
wm ¼ 2CN 1þ �eNp

� �2� �
arp WN

p;n

��� ���WN
p;nðB

NÞ2AN ð17Þ

in the direction normal to the surface and

FT
wm ¼ 2CT 12 �eTp

� �2� �
arp WT

p;n

��� ���WT
p;nðB

TÞ2AN ð18Þ

in the tangential direction, respectively. WN
p;n and WT

p;n are the normal and
tangential mean velocities of the particulate phase. AN denotes a face area of
the control volume coincident with wall. BN and BT are constants related to
the restitution coefficients, which are provided by Tu and Fletcher (1995).
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BN ¼
�eNp 1:0þ 2�eNp

� �qh i
1:0þ �eNp

8<
:

9=
;

1
qþ1

and

BT ¼

�eNp 1:0þ 2�eTp

� �qþ1
� �

1:0þ �eNp

8>><
>>:

9>>=
>>;

1
qþ1

ð19Þ

where q is a factor required for averaging process, 1 # q # 2; q ¼ 1 refers to
momentum average and q ¼ 2 corresponds to an energy average. �eNp and �eTp
are normal and tangential components of restitution coefficient. CN and CT are
coefficients of which CN is given by

CN ¼ Cl

WN
p;n

X3
i¼1

ðup;nÞ
2

" #1
2

ð20Þ

The coefficient Cl is 0.9 according to Tu and Fletcher (1995). Cl has been
defined by Tu et al. (1996) as:

Cl ¼ 12
Y p

YN

� �l

where l ¼ 21:3: l is an empirical constant. Yp is the normalised distance
normal to the wall and is always less than YN, the normalised particle wall
rebounding distance. The coefficient CT is related to the tangential wall
momentum exchange force and is modelled as:

C T ¼
CN

yþ
for yþ # 11:63 C T ¼

CN
�k

ln ðEyþÞ
for yþ . 11:63 ð21Þ

where k̄ and E are the same as in turbulence model of gas phase and y+. has a
similar definition but for the particulate flow.

The following section deals with kp and kgp transport equation by
consideration of interparticle collision effects. The values of empirical
constants for the gas phase turbulence are considered as in conventional
single phase flow modelling. These empirical constants are as follows:

Cm ¼ 0:09; C1 ¼ 1:44; C2 ¼ 1:92; sk ¼ 1:0; s1 ¼ 1:3
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Modelling particle turbulent kinetic energy and fluid particle
covariance by consideration of interparticle collision effect
The following section considers formulation for the transport equations relating
to the particulate fluctuating motion based on the approach of He and Simonin
(1993, 1996). The turbulent momentum transfer between fluctuating motions is
obtained in terms of the fluid particle velocity covariance given by an additional
transport equation. According to the experimental results and numerical
simulations, the interparticle collisions are found to have a significant influence
on the coarse particle transport properties in gas-solid turbulent flows even for
dispersed phase volumetric fraction a , 0:01: The interparticle collision model
is developed in the frame of the kinetic theory of diluted gases and the boundary
conditions are derived from local study of particle/wall collisions. In addition, the
detailedmodelling of interparticle collision rate is needed for accurate prediction
of coalescence process in dilute two-phase flows. In the kinetic theory of dilute
gases, the statistics of binary collisions are derived by assuming that the
velocities and positions of any two particles are completely independent. This is
the assumption of molecular chaos. In gas-solid flow, however, the probable
position and velocities of the two colliding particles will be correlated through
their interaction with the surrounding fluid. The present mathematical
modelling is based on separate transport equations for the components of the
particulate kinetic stress tensorwhich accounts simultaneously for the turbulent
transport mechanism, the dragging along the fluid turbulence and the
interparticle collisions. The closure model for the fluid particle velocity
correlations is derived by using an approximate Langevin equation (Simonin,
1996) governing the turbulent fluid velocity encountered along discrete particle
path. The covariance tensor components are computed with the help of the eddy
viscosity concept.

Interparticle collision model
Random collision velocity model. The closure of the interparticle collision
terms in the transport equations of the velocity moments presumes the form of
the particle-particle pair distribution function f22. In the frame of the kinetic
theory of dilute gases, the pair distribution function is written in terms of the
single distribution function assuming that the colliding particle velocities are
completely independent (molecular chaos assumption) so that:

f 22ðCp1;Cp2Þ ¼ f 2ðCp1Þf 2ðCp2Þ ð22Þ

The above assumption is theoretically valid only when the relaxation time is
much more than the eddy-particle interaction time. However, when the particle
relaxation time is of the same order (or smaller) than the eddy-particle
interaction time the approaching velocities become correlated through
dragging along fluid turbulence. Hence, the correlated collision velocity
model has been developed by (Simonin, 1996) accounting for the velocity
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correlation between the neighbouring particles through a presumed fluid
particle joint distribution function.

BGK closure model. Considering dilute dispersed two-phase flows with
perfectly elastic particles, it is proposed to use in first approximation the
Bhatnagar, Gross and Krook model from the kinetic theory of gases presented
by (Simonin, 1996).

df 2

dt

� �
col 1 ¼

2bc

t c
p

f 2 2 f 0
2

h i
ð23Þ

where t c
p is the particle-particle collision time (bc is constant) and f 0

2 is the
equilibrium particle velocity pdf (Maxwellian distribution).

Using the above equation, the collision term appearing in the mean balance
equations is given by:

Cðmpu
00
p;iu

00
p; jÞ ¼ 2arp

bc

t c
p

ku00p;iu
00
p; jlp 2

2

3
kpdij

� �
ð24Þ

The collision term in the kinetic stress transport equation is written as a
return-to-isotropy term. Collisions lead to a destruction of the off-diagonal
correlations and redistribution of energy among various normal stresses,

Cðmpu
00
p;iu

00
p;iÞ ¼ 0 ð25Þ

Third-order moment expansion (Grad’s theory). The distribution function in
the collision term may be approximated by its third-order expansion in Hermite
Polynomials following Grad’s theory of rarefied gases presented by
(Simonin, 1996).

f 2ðcp; x; tÞ ¼ 1þ
ap;ij

2T2
2

zp;izp; j þ
ap;ijm

6T3
2

zp;izp; jzp;m 2
ap;imm

2T2
2

zp;i

" #
f 0
2 ðcp; x; tÞ

ð26Þ

zp ¼ Cp 2 Up

T2 ¼
2

3
kp; ap;ij ¼ ku00p;iu

00
p; jlp2

2

3
kpdij

ap;ijm ¼ ku00p;iu
00
p; ju

00
p;mlp

According to the above “hard sphere” collision model, the collisional term in the
mean balance equation becomes,
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Cðmpu
00
p;iu

00
p; jÞ ¼2arp

sc

t c
p

ku00p;iu
00
p; jlp2

2

3
kpdij

� �
2arp

5

3

½12 ec�sc

½32 ec�t c
p

2

3
kpdij ð27Þ

with

sc ¼
½1þ ec�½32 ec�

5

Hence, the extension to inelastic particles leads to introduce a linear dissipation
rate in the kinetic stress transport equations proportional to the collision
frequency and function of the restitution coefficient.

The particulate fluctuating motion
The derivation for the closure of dispersed phase fluctuating motion leads to
certain particle time scales and the particle relaxation time is defined as:

t F
fp ¼ F21

D

rp

r
ð28Þ

where the average drag coefficient FD written in terms of local mean particle
Reynolds number is the time scale related to the fluid Lagrangian correlation
function computed along particle paths and is mainly affected by the crossing
trajectory effect.

t 0
fp ¼ t 0

1 1þ Cbj
2
r

� �21
; jr ¼ jV rj=

ffiffiffiffiffiffi
2

3
k

r
ð29Þ

where Cb has a value of 1.8 in orthogonal directions and 0.45 in the direction of
mean relative velocity; Vr is the local relative velocity between the particle and
the surrounding fluid; t 01 is the fluid Lagrangian turbulent time scale and t c

p
is the interparticle collision time in the frame of kinetic theory and is given by

t c
p ¼ a

6

dp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
16

p

2

3
kp

r" #21

ð30Þ

Particle-phase kinetic stress transport equation
The exchange of momentum due to particle collision remains negligible for
a , 0:1 and the random motion of the particles provides the principal
mechanism for macroscopic transport of momentum and kinetic energy.
According to Grad (1949), the influence of the interparticle collisions for
monosized elastic hard spheres reduces to a return to isotropy contribution in
the dispersed phase kinetic stress equations so that:
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arp up;m
d

dxm

� �
ku00p;iu

00
p; jlp ¼2

d

dxm
arpku00p;iu

00
p; ju

00
p;mlp

2arp ku00p;iu
00
p;mlp

dup; j
dxm

þ ku00p; ju
00
p;mlp

dup; j
dxm

� �

2arp
sc

t c
p

ku00p;iu
00
p; jlp 2

2

3
kpdij

� �
2arp

2

tFfp
ku00p;iu

00
p; jlp 2Rfp; ij

h i
ð31Þ

The subscript p stands for the particle phase. The first term on the right hand
side represents the transport of kinetic stress by particle velocity fluctuations
and is approximated using an eddy diffusivity closure assumption derived
from the third moment equations by neglecting convective transport and mean
gradient effects:

d

dxm
arpku00p;iu

00
p; ju

00
p;mlp ¼2

d

dxm
arpk

0
p;mn

d

dxn
ku00p;iu

00
p; jlp

� �

where the kinetic stress diffusivity tensor is written as

k 0p;mn ¼
t 0
fp

j 0
fp

Rfp;mn þ
tFfp

jFfp
ku00p;mu

00
p;nlp

" #
1þ

tFfp

jFfp

jc

tcp

" #21

where

jFfp ¼
9

5
; jc ¼

8

25
; j 0

fp ¼
3

2

Cm

CS

; CS ¼ 0:25

The second term represents the production by the mean particle velocity
gradient.

The third term accounts for the interparticle collision in the frame of Grad’s
theory ðsc ¼ 0:8Þ; this complementary term leads to destruction of the
off-diagonal correlations and redistribution of energy among the various
diagonal components of the kinetic stress tensor.

The last term represents the interaction with fluid turbulent motion, and the
fluid particle symmetric correlation tensor Rfp,ij is given by:

Rfp;ij ¼
1

2
ku00f;iu

00
p; jlp þ ku00p;iu

00
f; jlp

h i
The subscripts f and p refers to the fluid particle and phase, respectively.

The extension of Grad’s theory to inelastic particles leads to a
complementary dissipative term in the kinetic stress transport equation (31):
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2arp1c;ij ¼ 2arp
1

3

12 e2c
tcp

" #
2

3
kpdij

where ec is the restitution coefficient of inter particle collisions.
The given parameters of the return to isotropy term and kinetic stress

diffusivity tensor adopt the general forms

sc ¼
ð1þ ecÞð32 ecÞ

5
jc ¼

ð1þ ecÞð492 33ecÞ

100
ð32Þ

For perfectly elastic particles ðec ¼ 1Þ; the Grad values are sc ¼ 4=5 and
jc ¼ 8=25 for perfectly elastic particles.

Turbulent kinetic energy transport model
The two equation turbulence models viz. kp-kgp based on eddy viscosity
assumption is derived from separate particle kinetic stress equation. The kinetic
stress tensor components are computed with the eddy viscosity concept,

rpku00p;iu
00
p; jlp ¼ 2rp1p

dup;i

dxj
þ
dup; j

dxi

� �
þ

2

3
dij rpkp þ rp1p

dup;m

dxm

� �
ð33Þ

The expression for eddy-viscosity of particle phase is obtained from
off-diagonal correlation equation (31) considering that the fluid and particle
mean velocity gradients are almost equal.

1p ¼ 1 0
fp þ

1

2
tFfp

2

3
kp

� �
1þ

tFfp

2

sc

tcp

" #21

ð34Þ

The expression for fluid turbulent viscosity is given as:

1 0
fp ¼

1

3
kgpt

0
fp where kgp ¼ ku00f;iu

00
p; jlp

The eddy diffusivity coefficient is written as:

K 0
p ¼

1 0
fp

sq
þ
5

9
tFfp

2

3
kp

� �
1þ

5

9
tFfp

jc

tcp

" #21

The dissipation rate due to inelastic collisions is:

1c ¼
1

2

12 e2c
� �

tcp

2

3
kp

The interaction term accounting for continuous phase influence becomes
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pqp ¼ 2arp
1

tFfp
ð2kp 2 kgpÞ

d

dxj
ðarpupjkpÞ ¼

d

dxj
arp

K 0
p

sp

dkp

dxj

� �
þ Pkp 2 arp1c þ pqp

ð35Þ

where,

Pkp ¼ 2arpku00p;iu
00
p; jlp

dup;i
dxj

:

In case the interparticle collision effect is neglected, the term arp1c in
equation (35) will be come zero.

Fluid particle covariance equation
The covariance components are computed by resorting to the eddy viscosity
concept. The subscripts f and p refers to the fluid and particle phases.

rpku00f;iu
00
p; jlp ¼ 2rp1

0
fp

duf; j
dxj

þ
dup; j
dxi

� �

þ
1

3
dij rpkgp þ rp1

0
fp

duf;m

dxm
þ

dup;m

dxm

� �� �
ð36Þ

The fluid turbulent viscosity is written in terms of the fluid particle velocity
covariance kgp and eddy particle interaction time t 0

fp :

1 0
fp ¼

1

3
kgpt

0
fp where kgp ¼ ku00f;iu

00
p; jlp

The fluid particle covariance transport equation is therefore, formulated as:

d

dxj
ðarpupjkgpÞ ¼

d

dxj
arp

1 0
fp

sq

dkgp

dxj

� �
2 arp1fp þ pqfp þ Pkgp ð37Þ

The first term on the right hand side represents the transport of covariance by
velocity fluctuations.

The second term models the destruction rate due to viscous action in fluid
phase and loss of correlation by crossing-trajectories effects.

1fp ¼ kgp=t
0
fp

The third term represents interphase turbulent momentum transfer.

pqfp ¼ 2arp
1

tFfp
½ð1þ X fpÞkgp 2 2k2 2X fpkp�
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where,

X fp ¼
arp

br

The last term represents production by mean velocity gradients.

Pkgp ¼ 2arpku00f;iu
00
p; jlp

dup;i

dxj
2 arpku00p;iu

00
f; jlp

duf;i

dxj

The fluid particle velocity covariance equation may retain the form given in
equation (11) as shown below:

d

dxj
arpðuj þ upjÞkgp
	 


¼
d

dxj
arp

1f

sf
þ

1p

sp

� �
dkgp

dxj

� �
þ Pkgp 2 arp1fp 2 pgp

In the above equation the terms Pkgp and pgp have already been defined in
equation (11). The third term on the right hand side models the destruction rate
due to viscous action in fluid phase as defined in equation (37). The particle
eddy viscosity 1p in the above equation is defined in equation (34).

Algebraic relation for particle phase eddy viscosity
An algebraic relation relating particle phase eddy viscosity in terms of fluid
phase eddy viscosity is proposed by Choi and Chung (1983) and Zhou et al.
(1994):

1p ¼
1f

1þ
t*

tL

 !2
8<
:

9=
;

ð38Þ

where t is the particle relaxation time given by t* ¼ rpd
2
p=18m and tL is the

Lagrangian integral time scale.

Boundary conditions and computational details
For the computation of two phase flows the boundary conditions usually
prescribed are:

Inlet : u; v;w; up; vp;wp; p; �P;a are prescribed and are assumed uniform:

wall : u ¼ v ¼ w ¼ vp ¼ k ¼ kp ¼ kgp ¼ 0

The Eulerian wall boundary conditions are set for the axial and tangential
particle velocity through particle-wall collision model.

Symmetry axis:
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du

dy
¼

dup

dy
¼

dw

dy
¼

dwp

dy
¼

dk

dy
¼

d1

dy
¼

dkp

dy
¼

dkgp

dy

v ¼ 0; vp ¼ 0

where u, v, w are fluid velocities in the x, y and z (longitudinal) directions, and
subscript p stands for particle.

The computational grid chosen was ð15 £ 15Þ; i.e. 225 points on the cross
stream plane. The grid size was increased to ð20 £ 20Þ; i.e. 400 points on the
cross stream plane and variation in computational results was minimal. Hence,
the ð15 £ 15Þ grid was considered as optimum from the point of view of
numerical convergence, reliability of predictions and economical computer
storage. The numerical solutions depicted good convergence after a prescribed
number of iterations and percentage error in continuity equation was less than
0.01. The step size considered was reasonably small and the solution provided
a fully developed flow profile at about 500 forward steps, i.e. grid points in the
marching direction for straight ducts. For curved ducts, representative
predicted particle concentration profile was obtained at 200 forward steps,
i.e. grid points in the streamwise direction.

Solution procedure
The governing equations are solved by Parabolic procedure outlined by
Patankar et al. (1975). All the variables are stored two dimensionally and
a Tri-Diagonal Matrix Algorithm is adopted with upwind finite differencing
scheme, after discretization of governing equations by control volume
integration. The staggered grid system has been utilised, i.e. the grid system
for u, up and v, vp velocity components are staggered from the main control
volume. The solution method is outlined below.

(1) The average pressure �p and the pressure distribution p (x, y) at the
downstream section are assigned guessed values.

(2) The three-dimensional equations of momentum for fluid phase are
solved to obtain a first approximation to the downstream velocity
distribution.

(3) The mean pressure �p and the axial velocities are thereupon corrected
with reference to continuity and linearised longitudinal momentum
equation so as to ensure that the mass flow rate through the downstream
section is the same as through the upstream section.

(4) Since the cross-stream velocities do not satisfy the continuity equation
locally, a Poisson’ equation is derived from this equation and the two
linearised momentum equation; the Poisson equation is then solved for
correction of the pressure ( p) field. The cross-stream velocities are then
corrected accordingly.
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(5) The steps (i)-(iv) are repeated iteratively till equation of continuity is
satisfied. The k and 1 equations are then solved to obtain new
distribution of viscosity.

(6) The separate transport equations for kp and kgp are solved to generate
the particle phase eddy viscosity.

(7) The three dimensional equations of momentum for particle phase are
solved to obtain particle velocity field.

(8) The particle concentration distribution is determined from the equation
of continuity for the particle phase.

(9) A new downstream station is chosen and steps (i)-(viii) are repeated.

Disussion on numerical predictions
Numerical predictions in straight conduits
Figures 1 and 2 show computed air and particle velocity profiles in a straight
vertical pipe for the situation ðdp ¼ 406mm; rp=r ¼ 860; Re ¼ 4:27 £ 104Þ and
particle volumetric fractions of 1 £ 1023 and 5:14 £ 1023; respectively. The
particulate phase velocity profile shows a relatively flatter nature in both those
cases. The air velocity profile shows a more pronounced flatness with increased
particle concentration. It is evident from the figures that the velocity of the
dispersed phase is somewhat higher than that of air in the wall region as the air
flow is subjected to no-slip condition at the wall while the dispersed phase slips
by. The velocity of the particle is, however, smaller than the air velocity over
most of the cross section. The dispersed phase acts as a source of momentum
for the air at near wall region and the air velocity experiences deceleration in
the core region to satisfy mass conservation. The deceleration is caused by
particle drag which results in flattening of the air velocity profile in the core
region. The figures depict that the location at which the slip velocity vanishes
is shifted away from the wall as the particle mass loading ratio is decreased.

The figures also compare present predictions with the experimental data of
Tanaka et al. presented by He and Simonin (1993). There is a good agreement
between predictions and experimental data for the dispersed phase velocity
profile. Comparison is depicted between predictions based on kp and kgp
equations (10) and (11) and that obtained through kp and kgp equations (35) and
(37). These computations are in turn compared with that obtained through
eddy viscosity determined by equation (38). These comparisons show closeness
in agreement. However, agreement between predictions and experimental data
is closer with the k-1-kp models than using the algebraic relation for particle
phase eddy viscosity.

Numerical predictions on particle concentration in curved ducts
The curved duct under consideration is a pipe bend approximating a square
section. The erosion caused by particle impingement for this non-circular
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type bend is reduced substantially owing to uniformity in particle
concentration distribution along the outer wall in the Y-direction as shown
by Mitter (2000) and Mitter et al. (1993) through predictions. The coal pipe
bends of circular section had undergone serious erosion owing to localised
particle concentration as shown by Mitter (2000) and Mitter et al. (1998).
Figure 3 shows the predicted particle concentration profile between the inner
and outer walls of the curved circular pipe through the present modified
Eulerian approach. This figure depicts the zonalysed particle concentration
at the outer wall. Comparison is shown between the predictions obtained
through kp and kgp equations (10) and (11) and that determined through kp
and kgp equations (35) and (37). The comparison shows a very close
agreement (Mitter, 2000). The particle mass loading ratio m considered for
all computations is 0.45.

For curved ducts Dean number is defined as:

De ¼ Re

ffiffiffi
a

r

r

Figure 1.
Velocity distribution for
two phase flow in
straight vertical pipe:
comparison between
predictions and
experiment
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where r is the radius of curvatures, a the radius of the cross section, and
Re the Reynolds number.

Effects of Dean number. The numerical predictions are based on kp and kgp
equations (35) and (37). Figure 4 shows the computed particle concentration
between the inner and outer walls of a curved square duct for Dean number
2:45 £ 105, 2:2 £ 105, 2:0 £ 105 and 1:8 £ 105 at a distance of 2.0m from the
inlet. The particle size considered is 100mm. The figure depicts much higher
concentrations towards outer wall than inner wall owing to centrifugal effects
as shown by Mitter et al. (1993, 1998).

As the Dean number is increased the centrifugal effect is higher and the
particles migrate towards the outer wall at a greater rate leading to higher
particle concentration near this wall. Hence, the Dean number 1:8 £ 105 leads to
lowest predicted concentration near outer wall whereas the Dean number

Figure 2.
Velocity profiles for two
phase flow in straight

vertical pipe: comparison
between prediction and

experiment
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2:45 £ 105 results in highest computed particle concentration near this wall.
This feature has been depicted by Mitter (2000).

Effects of particle size. The kp and kgp equations (35) and (37) are utilised
for computations. The numerically predicted particle concentration
profile between the inner and outer walls of the curved square duct at
a distance of 2.0m from the inlet is shown for different particle sizes, viz. 100,
120, 150, and 200mm, respectively, in Figure 5. The Dean number considered is
2:2 £ 105.

Figure 3.
Particle concentration
profile along the
circumference between
the inner and outer wall
of a curved circular pipe
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As depicted by Mitter (2000) and Mitter et al. (1998), the acceleration is higher
for smaller particles; hence, the migration of these particles towards the outer
wall is at a greater rate. The centrifugal force hence has a greater effect when
the particle size is reduced. This phenomenon leads to highest concentration
near the outer wall for smallest size particle, viz. 100mm among the four
different particle sizes shown in Figure 5.

Experimental research
This section deals with the results and discussions related to the experimental
research.

Pressure drop measurement and erosion studies for two phase flow of air coal
mixtures
Pressure drop measurements have been conducted in straight vertical and
horizontal portions in coal pipes conveying two-phase air coal mixtures to

Figure 4.
Particle concentration
distribution in curved

square duct for different
Dean numbers
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burners in a thermal power plant. Similar pressure drop measurements have
also been performed in the curved sections of non-circular as well as circular
coal pipes. These experimental results are compared with the numerical
predictions based on kp and kgp equations with interparticle collision effects
and the comparisons are presented in Table I. It is evident from Table I that the
predicted pressure drops for both straight and curved ducts agree well with the
experimental data (Mitter, 2000). An uncertainity analysis showed that
the uncertainities involved in the pressure drop measurements were within
3 per cent.

For the above duct configuration the circular coal pipe has a diameter of
0.43m and the square coal pipe bend is of cross section 0:4 £ 0:4m:

The details of erosion studies for circular and square sectioned coal pipe
bends are depicted by Mitter (2000). The square section curved duct has
uniform erosion along the inner surface of the outer wall in the Y-direction as
well as longitudinal direction. This is physically observed and the erosion
is relatively less in this case. The circular curved duct undergoes a substantial

Figure 5.
Particle concentration
profile in curved square
duct for different particle
sizes
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impingment zonalised erosion (forming cavity) on the outer wall and also the
erosion pattern is non-uniform along this wall in the longitudinal direction.

The following is the comparative performance study from erosion point of
view of various types of coal pipe bends used on a 210MW unit of a large
thermal power plant, from inception in 1982 to date.

(1) Year 1982. Ordinary grey cast iron bend (RC 25 hardness) having
circular cross section with internal diameter of 425mm, having uniform
wall thickness of 20mm. This bend had leak-free life for only 6 months
and replacement life of 1 year.

(2) Year 1986. Bassalt lined Grey cast iron bend ( RC 25 hardness) having
circular cross section with cast iron wall thickmess of 15mm. The
bassalt lining had a thickness of 10mm and possessed RC 50 hardness.
The cavity formation by particle impingment was prominent. This bend
had leak-free life of 1 year and replacement life of 2 years.

(3) Year 1993. Experimental M–4 square sectioned mild steel bend (RC 25
hardness) had a leak-free life of 3 years and replacement life of 4 years.

(4) Year 1994. M–4 square sectioned bend with 10 mm. RC 50
liner (total outer wall thickness being 20mm, i.e. the same as
circular pipe bend) had a leak-free life of 5 years and a replacement
life of 6 years.

Conclusion
Based on the work it is concluded that Eulerian mathematical models prove
effective in simulation of two phase flow fields in confined systems. The
computed fluid and particle velocities agreed well with the experimental data.
It is observed that there is a close agreement in predictions of mean parameters
for two phase flow field by using kp and kgp equations with and without
interparticle collision effects.

Distance between
pressure tappings

Mass flow
rate of

Pressure drop due to
two phase flow of

air coal mixture with
coal air loading ratio
of 0.45 (mm water)

Duct configuration (m) air (kg/s) Prediction Experimental

Vertical straight pipe 4.2 4.05 31 27
Horizontal straight pipe 4.8 4.05 32.2 27
Non-circular square curved duct
(908 bend) 2.6 4.05 62 65
Circular curved duct (908 bend) 2.85 4.05 61.8 67 Table I.
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For curved ducts when Dean number is increased the predicted particle
concentration near the outer wall is higher than that at the lower Dean number
owing to greater centrifugal effects. As the particle size is increased the
computed particle concentration near the outer wall is lower than that for
smaller particle size, obviously because of the greater inertia for the larger
particles. Hence, the computations predict qualitatively the physical situation
in case of curved duct.

Comparison of pressure drop measurements of two-phase flows in straight
and curved ducts show good agreement with numerical predictions based on
the two fluid model.

The non-circular (square) curved sections of coal pipes conveying two-phase
flows are subjected to less erosion owing to uniformity in particle concentration
along the outer wall. The circular curved sections are subjected to serious
erosion owing to zonalysed particle concentration on the outer wall. This aspect
has been established through the numerical predictions and experimental
results.
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